# Fluorinated Acetylenes. Part 10.1 Cycloadditions of $\alpha, \alpha$-Bis(3,3,3trifluoropropynyl) benzyl Benzoate and 1,1-Bis(3,3,3-trifluoropropynyl) ethyl Ethanoate with Furan and Cyclopentadiene ${ }^{2}$ 

Michael G. Barlow, Sabiha Tajammal and Anthony E. Tipping*<br>Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 10D, UK


#### Abstract

Reaction between furan and the dialkynyl ester $\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{CPhO}_{2} \mathrm{CPh} 1 \mathrm{a}$ in dichloromethane at $50^{\circ} \mathrm{C}$ gave four rearranged 1:1 adducts, ( $Z$ )-5-( $\alpha$-benzoyloxybenzylidene)-1,4-bis(trifluoromethyl)-8-oxatricyclo[4.3.0.0 ${ }^{2.9}$ ] nona-3,6-diene 11a (major product), 4-benzoyloxy-3,8-bis(trifluoromethyl)-1,1a,-2,8c-tetrahydro-4H-1,2,8b-epoxymethenocyclopropa[c]fluorene 15, the corresponding 3 H -compound 16 and 8,9 -dibenzoyl-4,7-bis(trifluoromethyl)-2-oxatetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ] non-7-ene 13a via the common intermediate 2-benzoyloxy-2-phenyl-4,10-bis(trifluoromethyl)-7-oxapentacyclo[4.4.0.0. ${ }^{1.3}$ $\left.0 .{ }^{5.9} 0^{8.10}\right]$ dec-3-ene 8a formed from the Diels-Alder adduct by intramolecular ( ${ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}$ ) cycloaddition. The corresponding reaction with the ester $\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{CMeO}_{2} \mathrm{CMe} 1 \mathrm{lb}$ gave analogously the diketone 13b (major product) and a mixture of the $(E)$ - and $(Z)$-isomers of the triene 11 b ; a $2: 1$ adduct, 4-acetoxy-3-methyl-5,11-bis(trifluoromethyl)-8,15-dioxahexacyclo[10.2.1.0. ${ }^{2.11} 0 .{ }^{4.9} 0 .{ }^{5}{ }^{5.7} 0^{6.10}$ ]-pentadeca-2,13-diene 10 was also isolated. A mixture of cyclopentadiene and the ester 1a (2:1 molar ratio), heated at $50^{\circ} \mathrm{C}$, yielded mainly the bis-Diels-Alder adduct $\alpha, \alpha$-bis(3-trifluoromethylbicyclo[2.2.1] hepta-2,5-dien-2-yl)benzylbenzoate 7a, together with the rearranged $1: 1$ adduct, diketone 13c. Similarly, the major product from the reaction of an excess of cyclopentadiene with ester 1 b at $50^{\circ} \mathrm{C}$ was the bis-Diels-Alder adduct $\mathbf{7 b}$, but a $1: 1$ molar ratio of reactants at $20^{\circ} \mathrm{C}$ gave the mono Diels-Alder adduct 1-(3-trifluoromethylbicyclo[2.2.1]hepta-2,5-dien-2-yl)-1-(3,3,3trifluoropropynyl)ethyl ethanoate $\mathbf{6 d}$ in high yield. The bis adduct 7 a was stable at $50^{\circ} \mathrm{C}$, but the mono adduct 6d underwent slow intramolecular ( ${ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}$ ) cycloaddition, cf., the furan reactions, and the intermediate $8 \mathbf{d}$ so formed rearranged to a mixture of 8,9-diacetyl-4,7-bis(trifluoromethyl)tetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ] non-7-ene 13d and 1-acetoxy-1-[4,7- bis(trifluoromethyl)tetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ] non-7-en-9-yl]ethene 18. In the presence of traces of water, the ketone 13d was only a minor product with the major products being the substituted ethene 18 and two diastereoisomers of 1 -acetoxy-1-[4,7-bis(trifluoromethyl)tetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ]non-7-en-9-yl]ethanol 19.


The Diels-Alder reaction of dienes with monoalkynes has been studied extensively ${ }^{3}$ and has been extended to fluoroalkynes, especially those containing perfluoroalkyl groups. ${ }^{4}$ In the present work, as part of a general study of the chemistry (especially cycloadditions) of alkynes of the type $\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CR},{ }^{1.5}$ a general route to 1,4 -dialkynyl esters of type $\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right)_{2} \mathrm{CRO}_{2} \mathrm{CR} 1$ ( $\mathrm{R}=$ alkyl or aryl) has been established. A study of the cycloadditions of such esters with the dienes furan and cyclopentadiene ( $\mathbf{C P}$ ) has been carried out; to the best of our knowledge Diels-Alder reactions of $1,4-$ dialkynes have not been reported previously.

The most general route to 1,4-dialkynes involves copper(I) halide-promoted coupling of alk-1-ynyl Grignard reagents with prop-2-ynyl halides ${ }^{6-8}$ or prop-2-ynyl tosylates, ${ }^{4}$ or of terminal alkynes with prop-2-ynyl halides in the presence of ammonia ${ }^{9}$ or an amine. ${ }^{10}$ However, a report ${ }^{11}$ that reaction of $3,3,3-$ trifluoropropynyllithium 2 with ethanoyl chloride gave the 1,4dialkynyl alcohol 3 (ca. $50 \%$ ) after acid work-up, attracted our attention. It was reasoned that the use of an excess of an acid chloride in such a reaction should result in the intermediate lithium 1,4-dialkynylalkoxide 4 being trapped to afford the corresponding ester 1 .

Treatment of the salt 2 with an excess of benzoyl chloride or ethanoyl chloride (ca. 1:2 molar ratio) in ether at $-50^{\circ} \mathrm{C}$ did indeed give the corresponding esters 1 in excellent yield, $1 \mathbf{1 a}$ $(89 \%)$ and 1 b ( $86 \%$ ) via the ketones 5 (Scheme 1). The ketones 5 were not detected, thus confirming the observation ${ }^{11}$ that they are more susceptible to nucleophilic attack by salt 2 than are the acid chlorides. This method has been extended ${ }^{12}$ to the


Scheme $1 \mathbf{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{b}, \mathrm{R}=\mathrm{Me}$
preparation of the 1,4-diynyl ester $(\mathrm{PhC} \equiv \mathrm{C})_{2} \mathrm{CMeO}_{2} \mathrm{CMe}$, by reaction of the salt $\mathrm{PhC} \equiv \mathrm{CLi}$ with ethanoyl chloride.

The products obtained from the reactions of furan and cyclopentadiene with the esters $1 \mathbf{1 a}$ and $\mathbf{1 b}$ and the yields of isolated pure compounds are given in Table 1.

The formation of all the isolated products can be explained via initial cycloaddition $\left({ }_{\pi} 4+\pi_{\pi}\right)$ of the diene to one of the triple bonds in the dialkynyl ester 1 , to give the mono Diels-Alder adducts 6. These $1: 1$ adducts then react further, either by an intermolecular cycloaddition $\left(\pi_{\pi}+\pi_{\pi} 2\right)$ involving a second molecule of diene and the remaining triple bond in 6 to yield the bis-Diels-Alder adducts 7 , and/or by an intramolecular $\left({ }_{\pi}{ }_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}\right)$ cycloaddition to afford the strained, un-

Table 1 The reaction of furan and cyclopentadiene (CP) with esters $\mathbf{1 a}$ and $\mathbf{1 b}$ in dichloromethane

| Diene | Ester | Molar ratio | Temp. $\left({ }^{\circ} \mathrm{C}\right)$ | Time (days) | Product (\%) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1:1 Adduct |  |  |  |  |  | 2:1 Adduct |  | $\frac{\text { Others }}{19}$ |
|  |  |  |  |  | 6 | 11 | 13 | 15 | 16 | 18 | 7 | 10 |  |
| Furan | 1a | 2:1 | 50 | 6 |  | 44 | 6.5 | 4.5 | 3 |  |  |  |  |
| Furan | 1b | 2:1 | 50 | 6 |  | 20 | 26.5 |  |  |  |  | 10 |  |
| CP | 1a | 2:1 | 50 | 4 |  |  | 15 |  |  |  | 59 |  |  |
| CP | 1b | 2:1 | 50 | 4 |  |  | $a$ |  |  | 12 | 60 |  | 5.5 |
| CP | 1b | 1:1 | 50 | 5 | 23 |  | $a$ |  |  | 11 | 14 |  | 33.5 |
| CP | 1b | 1:1 | 20 | 12 | 88 |  |  |  |  |  |  |  |  |

${ }^{a}$ Present in the crude reaction product mixture $(<5 \%)\left({ }^{19} \mathrm{~F}\right.$ NMR and TLC).
stable, intermediate $1: 1$ adducts 8 , which contain a bridgehead double bond in fused 5 - and 3 -membered rings (Scheme 2).


## Scheme 2

The possibility that the unstable adducts 8 were formed from the $2: 1$ adducts 7 by intramolecular $\left({ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}\right)$ cycloaddition followed by cleavage of diene was discounted (see later).

Only in the reactions involving the more reactive cyclopentadiene were Diels-Alder $1: 1 \mathbf{6 d}$ and $2: 1$ adducts $7 \mathbf{a}$ and 7b isolated, and the $2: 1$ adducts were the major products when an excess of the diene was employed at $50^{\circ} \mathrm{C}$. The $1: 1$ adduct $\mathbf{6 d}$ was isolated in moderate yield only from the 1:1 molar ratio reaction of cyclopentadiene was the ester 1 b at $50^{\circ} \mathrm{C}$, but at $20^{\circ} \mathrm{C}$ it was isolated in excellent yield, indicating it was stable at this temperature towards $\left({ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+\pi_{\pi} 2_{s}\right)$ cycloaddition to give the unstable intermediate 8 d. The use of a $1: 1$ molar ratio of cyclopentadiene and the ester 1 a at $20^{\circ} \mathrm{C}$ would probably have enabled the isolation of the $1: 1$ adduct $\mathbf{6 c}$.

When the mono Diels-Alder adduct $\mathbf{6 d}$ was heated at $50^{\circ} \mathrm{C}$, it underwent slow intramolecular $\left({ }_{\pi} 2_{s}+\pi_{\mathrm{s}}{ }_{\mathrm{s}}+{ }_{\pi} 2_{\mathrm{s}}\right)$ cycloaddition, and after 7 days, unchanged $\mathbf{6 d}$ ( $31 \%$ recovered) and the rearranged $1: 1$ adducts, the diene $18(45 \%)$ and the diketone 13d ( $21 \%$ ) were isolated (Scheme 3). The bis-Diels-Alder adduct 7a was considerably more stable, being unchanged when heated under the reaction conditions ( $50^{\circ} \mathrm{C}, 4$ days), and being recovered to a large extent ( $c a .75 \%$ unchanged) when heated at $70^{\circ} \mathrm{C}$ over 3 weeks; a complex mixture of minor products was formed, which did not contain the diketone 13c, as shown by NMR spectroscopy. It is, therefore, considered that the rearranged $1: 1$ adducts $\mathbf{1 1}, \mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}, \mathbf{1 8}$ and $2: 1$ adduct $\mathbf{1 0}$ are formed from the mono Diels-Alder adducts 6, and not the bis adducts (see Schemes 2 and 3).

This is in contrast to the report that, in the reaction of ethyl propynoate with 2,5-dimethylfuran, the homo Diels-Alder 2:1 adduct $\mathbf{2 0}$ is formed, not by reaction of the initially-formed $1: 1$ adduct 21 with propynoate, but by dimerisation of endoxide 21, followed by cleavage of 2,5 -dimethylfuran. ${ }^{13}$

Homo Diels-Alder $\left({ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}+{ }_{\pi} 2_{s}\right)$ cycloadditions have only been reported for reactions in which at least two of the $\pi$ bonds involved are present in one reactant. Adducts of norbornadienes and electron-deficient alkenes or alkynes are the most common examples of this type of cycloaddition, e.g. reaction of norbornadiene with tetracyanoethylene ${ }^{14}$ (TCNE) at $20^{\circ} \mathrm{C}$ and with hexafluorobut-2-yne ${ }^{15}$ at $150^{\circ} \mathrm{C}$, to afford adducts $22(100 \%)$ and $23(78 \%)$, respectively.

The isolated rearranged adducts $11,13,15,16,18$ result from ring opening of the cyclopropane in the strained intermediates 8 (see Scheme 3).
Since the prop-2-ynyl carbon atom in each of the Diels-Alder adducts 6 is chiral, intramolecular cyclisation would afford the intermediates 8, each as a pair of diastereoisomers $\mathbf{8 A}$ and $\mathbf{8 B}$, depending on the relative stereochemistry of the R and $\mathrm{O}_{2} \mathrm{CR}$ groups on the cyclopropane ring. Each diastereoisomer, on electrocyclic ring opening by a symmetry-allowed $\left({ }_{\pi} 2_{a}+{ }_{\sigma} 2_{s}+\right.$ $\mathrm{o}_{\mathrm{a}} \mathbf{2}_{\mathrm{a}}$ ) process, would give a different triene 11, as far as the stereochemistry at the exocyclic double bond is concerned, i.e., diastereoisomer 8 A would give the $Z$-triene 11 A and the diastereoisomer 8B would afford the $E$-triene 11B (Scheme 4).
The trienes 11 were major products from the furan reactions, but they were not detected in the products from the cyclopentadiene reactions; the reason for this is not clear.

The triene 11a, isolated from the phenyl ester 1a reaction, was the $Z$-isomer, as shown by X-ray crystallography, ${ }^{16}$ while the triene 11b, isolated from the methyl ester 1b reaction, was a mixture of both isomers in the ratio ca. 2:1, but it was not possible to determine whether the major product was the $Z$ - or $E$-isomer. It is considered that the reasons for this are steric in origin. When R is bulky, i.e. Ph , it is in a less crowded environment in 8A than in 8B, where interaction with the cyclopropane $\mathrm{CF}_{3}$ group is substantial. Furthermore, in 11B

$\begin{aligned} 11 a \mathrm{R} & =\mathrm{Ph} \\ b \mathrm{R} & =\mathrm{Me}\end{aligned}$



18



12


b $X=O, R=M e$
c $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{Ph}$
d $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{R}=\mathrm{Me}$
$-\mathrm{H}^{+} \mathrm{H}^{14}$

15

16

Scheme 3


20


21


8A


11B
there are substantial steric interactions between the R group and the vinylic $\mathrm{CF}_{3}$ group, leading to further crowding in the transition state leading to 11B. The more flexible benzoyloxy group does not suffer from this disadvantage, so both formation of 8 A , where $\mathrm{X}=\mathrm{O}$ and $\mathrm{R}=\mathrm{Ph}$, and its rearrangement to 11 A , are favoured. The steric requirements of a methyl group are much less than those of a phenyl group, and so both diastereoisomers 8A and $8 \mathrm{~B}(\mathrm{X}=\mathrm{O}$ and $\mathrm{R}=\mathrm{Me})$ can be formed and undergo

Scheme 4
rearrangement to the triene $\mathbf{1 1 b}$, as a mixture of $Z$ - and $E$-isomers.
Dienynes of type $\mathbf{1 2}$ (or products derived from them) arising from the alternative electrocyclic ring opening of intermediates $\mathbf{8 a}$ and 8 b were not detected.

The diketones 13 are formed by rearrangement of the


Scheme 5
intermediates $\mathbf{8}$ by a formal 1,3-shift involving carbonyl carbon, and could arise from either of the diastereoisomers $\mathbf{8 A}$ or 8 B by the breaking of either of two strained cyclopropane bonds as shown in Scheme 5. An alternative mechanistic pathway is via heterolytic fission of a $\mathrm{C}-\mathrm{C}$ bond to afford the stabilised zwitterions 24 in which the negative charge corresponds to an orbital of high s-character, while the positive charge on a tertiary allylic carbon (which is also benzylic when $R=P h$ ) is also stabilised by resonance involving the adjacent oxygen lone pair.

The remaining products from the reaction of furan with ester 1a, i.e. the dodecenes 15 and 16, are thought to arise via the tetraene 14, the formation of which could be explained by a $1,3-$ carbon shift in intermediate 8a involving an ortho-phenyl carbon, which is symmetry forbidden for a thermal process. A typical example of such a rearrangement is the isomerisation of allylcyclopropane to cyclopentene. This has been the subject of numerous investigations and possible alternatives for the rearrangement are a diradical mechanism ${ }^{17.18}$ or a symmetryallowed 1,3 -sigmatropic process. ${ }^{19}$ Few thermal uncatalysed 1,3 -shifts have been reported, although it has been proposed that the conversion of compound 25 into the norbornene 26 ,

which was shown to occur with inversion of configuration at the migrating centre, involved a concerted, symmetry-allowed suprafacial 1,3 -carbon shift. ${ }^{20}$

The rearrangement of strained intermediate 8a to the hexacycle 14 (Scheme 6) could also occur by a suprafacial 1,3carbon shift, or via the intermediacy of a resonance stabilised diradical 27, resulting from homolytic $\mathrm{C}-\mathrm{C}$ bond fission. However, it could also take place via heterolytic $\mathrm{C}-\mathrm{C}$ bond fission to give the stabilised zwitterion 24, ( $\mathrm{X}=\mathrm{O}$ and $\mathrm{R}=\mathrm{Ph})$.
Since suprafacial 1,7-hydrogen shifts are disallowed thermally, it is probable that aromatisation of the rearranged intermediate 14 to the isolated adduct 15 was catalysed by traces of protons available on the walls of the Pyrex reaction vessel. Rearrangement of 14 to adduct 16 could occur by a thermally allowed suprafacial 1,5 -hydrogen shift, although it is equally possible that it arises by acid catalysis. The adduct 15, the structure of which was established by an X-ray crystal-

lographic study, ${ }^{16}$ is the sterically favoured diastereoisomer with the $\mathrm{O}_{2} \mathrm{CPh}$ group on the opposite side of the molecule to the endoxide bridge; the alternative diastereoisomer 28, arising from protonation of $\mathrm{C}-10$ on the other face was not detected. The stereochemistry of the adduct 16 was not established, but the diastereoisomer 29 would be favoured on steric grounds.


28


29

The possibility that the triene 11a was a precursor to the other rearranged adducts 13a, 15 and 16 was discounted, because when triene 11a was heated in dichloromethane under the reaction conditions, the other adducts were not detected. Slow

decomposition of the triene did occur, and a considerable number of unidentified minor products were formed.

From the reaction of cyclopentadiene with the ester $\mathbf{1 b}$, a further $1: 1$ adduct 18 , and its hydration product 19, were isolated (see Scheme 3). Rearrangement of the intermediate 8d by a 1,3 -hydrogen shift would give the adduct 18, but suprafacial 1,3 -hydrogen shifts are disallowed thermally. A more likely mechanism involves acid catalysis (from traces of protons available on the walls of the tube) to give the intermediate resonance-stabilised carbocation 17. Three mechanisms have been proposed to account for opening of a cyclopropane ring by proton attack, ${ }^{21}$ i.e. corner protonation, edge protonation and direct formation of an open-chain carbocation: a corner-protonated cyclopropane is somewhat more stable than an edge-protonated cyclopropane. ${ }^{22}$ Loss of a proton from the methyl group in the carbocation 17 would then give the alkene 18, while the alcohol 19 could be formed from attack by water on the carbocation 17 or on the corner
protonated cyclopropane 30 (Scheme 7). The alcohol 19 was formed as a mixture of two diastereoisomers, which were separated by DCFC; the water required was found to be present in the ester $\mathbf{1 b}$.

Apart from the Diels-Alder adducts 7, a further 2:1 adduct 10 was isolated from the reaction of furan with the ester $1 \mathbf{b}$, and its structure was determined by X-ray crystallography. ${ }^{16}$ This was considered to be formed by reaction of the strained intermediate $1: 1$ adduct $\mathbf{8 b}$ with furan, to afford the $2: 1$ adduct 9 , which underwent opening of the cyclopropane ring and migration of the $\mathrm{O}_{2} \mathrm{CMe}$ group by a $\left({ }_{\mathrm{\sigma}} 2_{\mathrm{a}}+{ }_{\sigma} 2_{\mathrm{a}}+{ }_{\pi} 2_{\mathrm{s}}\right.$ ) process involving the carbonyl carbon in both possible diastereoisomers 9 a and $9 \mathrm{9b}$; a symmetry-allowed suprafacial $1,2-\mathrm{O}_{2} \mathrm{CMe}$ shift in the diastereoisomer 9a would also give compound $\mathbf{1 0}$ but this rearrangement is much less likely. The alternative ring opening and shift of the $\mathrm{O}_{2} \mathrm{CMe}$ group would have given the isomer 31, but this was not detected, and models clearly show that the approach of the carbonyl oxygen to the appropriate carbon of
the cyclopropane ring necessary for this rearrangement is much more hindered because of the endoxide system than is the carbonyl carbon approach to the cyclopropane carbon leading to the observed product $\mathbf{1 0}$. The apparent absence of a product analogous to $\mathbf{1 0}$ in the corresponding reaction involving the phenyl ester 1a is probably due to increased steric hindrance to reaction of the intermediate 8a with furan because of the presence of the bulkier groups, Ph and $\mathrm{O}_{2} \mathrm{CPh}$.
The bis Diels-Alder adduct 32 was not detected in the products and this, coupled with the observation that the bis Diels-Alder adduct 7a was not a precursor to the other observed products formed in the reaction of the ester $1 \mathbf{1 a}$ with cyclopentadiene, makes it unlikely that the $2: 1$ adduct $\mathbf{1 0 b}$ was formed via cyclisation of the Diels-Alder 2:1 adduct 32 (Scheme 8).

The isolated Diels-Alder 1:1 adduct $\mathbf{6 d}$ was a mixture of the two diastereoisomers 6 E and 6 F , and sufficient purification of each isomer was achieved to allow NMR spectral assignments to be made to the separated isomers, which were present in the ratio $52: 48$. The Diels-Alder $2: 1$ adducts $7 \mathbf{a}$ and 7 b were mixtures of three diastereoisomers, two meso and one ( $\pm$ ) pair, i.e. 7C, 7D and 7E, as shown by NMR spectroscopy. Attempts were made to separate the three isomers of the adduct 7 a , but only one, a meso isomer 7C or 7D ( $\mathrm{R}=\mathrm{Ph}$ ), was obtained in low yield ( $4 \%$ ).



6E


6F



7D

From the reactions carried out at $50^{\circ} \mathrm{C}$, the yields of isolated pure products range from 56.5 to $81.5 \%$, and only the major or significant products could be obtained pure. Apart from the triene 11a, which was obtained by precipitation from solvent, the other products were separated by DCFC and were present in the complex product mixtures in higher yields than the isolated yields indicated.

## Experimental

Furan was a commercial sample and cyclopentadiene was made by cracking dicyclopentadiene at $200^{\circ} \mathrm{C} .3,3,3$-Trifluoropropyne was prepared in 79\% yield from 1,1,2-trichloro-3,3,3trifluoropropene as reported ${ }^{23}$ and its lithium salt 2 was formed by bubbling the alkyne into a stirred solution of butyllithium ( $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ in hexane) in anhydrous diethyl ether kept at $-78^{\circ} \mathrm{C}$ under a nitrogen atmosphere in a flask fitted with a dropping funnel and a cold finger ( $-78^{\circ} \mathrm{C}$ ).
Crude reaction product mixtures were examined by TLC and the individual components were separated by dry column 'flash' chromatography (DCFC) $\left(\mathrm{SiO}_{2}\right.$, Merck Kieselgel 60 H ) and further purification, where necessary, was achieved by recrystallisation, repeated DCFC or preparative-scale TLC
(plates coated with $\mathrm{SiO}_{2}$, Fluka $60_{\text {GF }}$ ). Eluents used for chromatography are given in the text; light petroleum refers to b.p. $40-60^{\circ} \mathrm{C}$.

Products were examined by IR (Perkin-Elmer DE783 spectrometer), ${ }^{1} \mathrm{H}$ NMR [Bruker AC300 instrument operating at 300 MHz with tetramethylsilane (TMS) as external reference], ${ }^{19} \mathrm{~F}$ NMR (Perkir:-Elmer R32 spectrometer operating at 84.6 MHz with trifluoroacetic acid as external reference) and ${ }^{13} \mathrm{C}$ NMR (Bruker AC300 instrument operating at 75.0 MHz with broad band proton decoupling, $\mathrm{D}_{2} \mathrm{O}$ as the deuterium lock signal and TMS as external reference; DEPT $135^{\circ}$ spectra were also run on all samples) spectroscopy and mass [Kratos MS 25 or 45 instruments with an electron beam energy of 70 eV using electron impact (EI) or chemical ionisation (CI, $\mathrm{NH}_{3}$ gas) conditions] spectrometry. NMR samples were run as solutions in $\mathrm{CDCl}_{3}$ and chemical shifts to low field of reference are designated positive. $J$-Values in Hz .

Single crystal X-ray structure determinations were carried out on either a Rigaka AFC65 or CAD4 diffractometer.
B.p.s were determined by distillation and M.p.s are uncorrected.

Reaction of 3,3,3-Trifluoropropynyllithium $\mathbf{2}$ with Acid Chlor-ides.-(a) With benzoyl chloride. A solution of benzoyl chloride $(22.50 \mathrm{~g}, 160.1 \mathrm{mmol})$ in anhydrous diethyl ether ( $30 \mathrm{~cm}^{3}$ ) cooled to $-50^{\circ} \mathrm{C}$ was added in one batch to a stirred solution of the salt 2 [prepared from butyllithium ( $4.80 \mathrm{~g}, 75.0 \mathrm{mmol}$ ) in diethyl ether ( $200 \mathrm{~cm}^{3}$ ) and 3,3,3-trifluoropropyne ( $7.80 \mathrm{~g}, 83.0$ $\mathrm{mmol})$ ] at $-78{ }^{\circ} \mathrm{C}$ and stirring was continued at this temperature for 1 h and then at ca . $-55^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was allowed to reach room temperature when the diethyl ether was removed (rotary evaporator) and the residue was treated with aqueous sodium hydroxide ( $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 200$ $\mathrm{cm}^{3}$ ) and stirred for 2 h . The organic layer was separated and the aqueous layer was extracted with diethyl ether ( $3 \times 40 \mathrm{~cm}^{3}$ ) and the extracts were added to the organic layer which was dried $\left(\mathrm{CaCl}_{2}\right)$ and the solvent was removed ${ }^{\circ}$ (rotary evaporator) to afford a semi-solid residue ( 14.51 g ). This residue was purified in two portions (DCFC; eluent light petroleum) to afford $\alpha, \alpha-$ bis(3,3,3-trifluoropropynyl)benzyl benzoate 1a ( $13.22 \mathrm{~g}, 33.4$ $\mathrm{mmol}, 59 \%$ ) (Found: C, 60.9; H, 2.7; F, 28.9. $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 60.6 ; \mathrm{H}, 2.5 ; \mathrm{F}, 28.7 \%$ ); $m / z 396\left(\mathrm{M}^{+}, 1.7 \%\right.$ ), $291\left(\mathrm{M}^{+}\right.$ $-\mathrm{PhCO}, 100), 275\left(\mathrm{M}^{+}-\mathrm{PhCO}_{2}, 82.3\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}\right.$, 53.6); $v_{\text {max }} / \mathrm{cm}^{-1} 2260 \mathrm{~m}$ (C $=\mathrm{C}$ str.), 1740 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1250 s (C-F str.) and 1150 s ( $\mathrm{C}-\mathrm{O}$ str.).
(b) With acetyl chloride. A solution of acetyl chloride $(10.20 \mathrm{~g}$, 129.9 mmol ) in diethyl ether ( $20 \mathrm{~cm}^{3}$ ) cooled to $-50^{\circ} \mathrm{C}$ was added in one batch to a stirred solution of the salt $\mathbf{2}$ [prepared from butyllithium ( $3.97 \mathrm{~g}, 62.0 \mathrm{mmol}$ ) in diethyl ether $\left(200 \mathrm{~cm}^{3}\right)$ and $3,3,3$-trifluoropropyne $(6.53 \mathrm{~g}, 69.5 \mathrm{mmol})]$ at $-78^{\circ} \mathrm{C}$ and the temperature was slowly raised to $-20^{\circ} \mathrm{C}$ and stirring was continued at this temperature for 0.5 h . After warming to room temperature the precipitate of lithium chloride was removed by filtration and washed with diethyl ether ( $3 \times 20 \mathrm{~cm}^{3}$ ). The combined filtrate and washings were dried $\left(\mathrm{MgSO}_{4}\right)$, the majority of the ether was then removed at low pressure and the residue was distilled to give 1,1-bis(3,3,3-trifluoropropynyl)ethyl ethanoate $\mathbf{1 b}(14.5 \mathrm{~g}, 53.3 \mathrm{mmol}, 86 \%)$ (Found: C, $44.0 ; \mathrm{H}, 2.3 ; \mathrm{F}$, 42.0. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{O}_{2}$ requires C, 44.1, H, 2.2; F, 41.9\%); m/z 272 $\left(\mathrm{M}^{+}, 0.2 \%\right), 213\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}, 6.2\right), 209\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}-\right.$ HF, 10.8) and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 100\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 2295 \mathrm{~m}(\mathrm{C} \equiv \mathrm{C}$ str.), 1770s (ester $\mathrm{C}=\mathrm{O}$ str.), 1255 s and 1220 s (C-F str.) and 1160s (C-O str.).

Reactions of the Benzoate 1a.-(a) With furan. A mixture of the ester $1 \mathrm{a}(3.99 \mathrm{~g}, 10.1 \mathrm{mmol})$, furan $(1.36 \mathrm{~g}, 20.0 \mathrm{mmol})$ and dichloromethane ( $10 \mathrm{~cm}^{3}$ ) was heated in vacuo in a Rotaflo tube (ca. $30 \mathrm{~cm}^{3}$ ) at $50{ }^{\circ} \mathrm{C}$ for 6 days. The solvent was removed
(rotary evaporator) and the solid residue ( 4.60 g ) was shown by TLC [eluent, light petroleum-dichloromethane ( $1: 1 \mathrm{v} / \mathrm{v}$ )] to contain one major ( $R_{\mathrm{f}} 0.90$ ), three significant ( $R_{\mathrm{f}} 0.82,0.79$ and 0.61 ) and a number of minor components. The major product was isolated from a solution of the mixture in the minimum amount of light petroleum-dichloromethane ( $3: 1 \mathrm{v} / \mathrm{v}$ ) by precipitation with an excess of light petroleum-dichloromethane ( $4: 1 \mathrm{v} / \mathrm{v}$ ) and then filtration followed by removal of the last traces of solvent in vacuo. It was identified by X-ray crystallography as (Z)-5( $\alpha$-benzoyloxybenzylidene) -1,4-bis(tri-fluoromethyl)-8-oxatricyclo[4.3.0.0 $0^{2.9}$ ]nona-3,6-diene 11a (2.06 $\mathrm{g}, 4.40 \mathrm{mmol}, 44^{\%}$ ), colourless crystals, m.p. $122^{\circ} \mathrm{C}$ (Found: C , 62.2; $\mathrm{H}, 3.0 ; \mathrm{F}, 24.8 . \mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}, 3.0 ; \mathrm{F}$, $24.6 \%$ ); $m / z 464\left(\mathrm{M}^{+}, 0.2 \%\right), 396\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}, 1.2\right), 359\left(\mathrm{M}^{+}\right.$ $-\mathrm{PhCO}, 1.3), 343\left(\mathrm{M}^{+}-\mathrm{PhCO}_{2}, 1.6\right), 242\left(\mathrm{C}_{8} \mathrm{~F}_{6} \mathrm{O}_{2}{ }^{+}, 2.2\right)$, $165\left(\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2}{ }^{+}, 3.9\right), 105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ and $77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 34.6\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1730$ s (ester $\mathrm{C}=\mathrm{O}$ str.), 1285 s and 1260 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1175 s and 1165 s ( $\mathrm{C}-\mathrm{O}$ str.).

The solvent was removed (rotary evaporator) from the filtrate and the remaining three significant components were separated from the resulting solid ( 2.51 g ) by repeated DCFC [eluent; light petroleum-dichloromethane $(1: 1 \mathrm{v} / \mathrm{v})]$ to give in order of elution: (i) a colourless, slightly impure solid ( ${ }^{19} \mathrm{~F}$ NMR) ( 0.27 g ), which was purified by recrystallisation from pentane and identified by X-ray crystallography as 4-benzoyloxy-3,8-bis(trifluoromethyl)-1,1a,2,8c-tetrahydro-4H-1,2,8b-epoxymethenocyclopropa[c]fluorene $15(0.21 \mathrm{~g}, 0.45 \mathrm{mmol}, 4.5 \%)$, colourless crystals, m.p. $160^{\circ} \mathrm{C}$ (Found: C, 62.2; H, 2.9; F, 24.6. $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 62.1 ; \mathrm{H}, 3.0 ; \mathrm{F}, 24.6 \%\right)\left[\mathrm{m} / \mathrm{z} 464\left(\mathrm{M}^{+}\right.\right.$, $3.5 \%), 377\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}-\mathrm{F}, 8.0\right), 359\left(\mathrm{M}^{+}-\mathrm{PhCO}, 78.8\right)$, $343\left(\mathrm{M}^{+}-\mathrm{PhCO}_{2}, 4.6\right)$ and $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 1720 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1265s (C-F str.) and 1135 s and 1115 s ( $\mathrm{C}-\mathrm{O}$ str.)]; (ii) a yellow sticky solid ( 0.20 g ), which was further purified by preparative-scale TLC [eluent, light petroleum-dichloromethane $(1: 1 \mathrm{v} / \mathrm{v})$ ] to afford a colourless sticky solid, identified by NMR spectroscopy as 4-benzoyloxy-3,8c-bis(trifluoromethyl)-1,1a,2,8c-tetrahydro-3H-1,2,8b-epoxymethenocyclopropa[c]fluorene $16(0.14 \mathrm{~g}, 0.30 \mathrm{mmol}, 3 \%)$ (Found: C, 62.4; H, 3.3; F, 24.4. $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}$, $3.0 ; \mathrm{F}, 24.6 \%$ ) $\mathrm{m} / \mathrm{z} 464\left(\mathrm{M}^{+}, 2.5 \%\right), 359\left(\mathrm{M}^{+}-\mathrm{PhCO}, 1.3\right), 105$ $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ and $77\left(\mathrm{C}_{6} \mathrm{H}_{5}^{+}, 12.3\right) ; v_{\max } / \mathrm{cm}^{-1} 1730 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.); 1265 and 1235 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1140s ( $\mathrm{C}-\mathrm{O}$ str.)]; and (iii) an impure solid ( ${ }^{19} \mathrm{~F}$ NMR) $(0.47 \mathrm{~g})$ which was recrystallised from light petroleum-dichloromethane ( $4: 1 \mathrm{v} / \mathrm{v}$ ) and identified by NMR spectroscopy as 8,9-dibenzoyl-4,7-bis(trifluoromethyl)-2-oxatetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ]non-7-ene 13a ( $0.30 \mathrm{~g}, 0.65 \mathrm{mmol}, 6.5 \%$ ) colourless crystals, m.p. $130^{\circ} \mathrm{C}$ (Found: C, 61.9; H, 3.2; F, 24.9. $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires C, $62.1 ; \mathrm{H}$, $3.0 ; \mathrm{F}, 24.6 \%$ ) $\left[\mathrm{m} / \mathrm{z} 464\left(\mathrm{M}^{+}, 11.1 \%\right.\right.$ ), $395\left[\mathrm{M}^{+}-\mathrm{CF}_{3}\right.$ (or $\left.\left.-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}-\mathrm{H}\right), 3.2\right], 377\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}-\mathrm{F}, 4.2\right), 105$ $\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 60.7\right)$ and $40\left(\mathrm{C}_{3} \mathrm{H}_{4}{ }^{+}, 49.2\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1670 \mathrm{~s}$ and 1655 s (ketonic $\mathrm{C}=\mathrm{O}$ str.), 1335 s and 1270 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1160 s and 1140 s ( $\mathrm{C}-\mathrm{O}$ str.)].

When a sample of the triene $11 \mathbf{1 a}(1.00 \mathrm{~g}, 2.20 \mathrm{mmol})$ in dichloromethane ( $5 \mathrm{~cm}^{3}$ ) was heated under the reaction conditions ( $50{ }^{\circ} \mathrm{C}, 6$ days) the resulting material $(0.89 \mathrm{~g})$ after removal of the solvent was shown ( ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR) to consist of unchanged 1a and a number of minor components none of which corresponded to $1: 1$ adducts 13a, 15 or 16.
(b) With cyclopentadiene. A mixture of the ester $1 \mathrm{la}(4.00 \mathrm{~g}$, $10.1 \mathrm{mmol})$, cyclopentadiene ( $1.50 \mathrm{~g}, 22.7 \mathrm{mmol}$ ) and dichloromethane ( $10 \mathrm{~cm}^{3}$ ) was heated in vacuo in a Rotaflo tube (ca. $30 \mathrm{~cm}^{3}$ ) at $50^{\circ} \mathrm{C}$ for 4 days. The solvent was removed (rotary evaporator) and the yellow solid residue ( 5.51 g ) was shown by TLC [eluent; diethyl ether-light petroleum ( $1: 4 \mathrm{v} / \mathrm{v}$ )] to contain two major components ( $R_{\mathrm{f}} 0.71$ and 0.21 ) and a number of minor components. The two major components were separated by DCFC (same eluent) to give: (i) a mixture of three isomers
[two meso and a ( $\pm$ ) pair] of the $2: 1$ adduct, $\alpha, \alpha$-bis(3-trifluoromethylbicyclo[2.2.1]hepta-2,5-dien-2-yl)benzyl benzoate $7 \mathrm{a}\left(3.35 \mathrm{~g}, 6.30 \mathrm{mmol}, 59 \%\right.$ ), m.p. $115-120^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 4.0; F, 21.6. Calc. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{2}: \mathrm{C}, 68.2 ; \mathrm{H}, 4.2 ; \mathrm{F}$, $21.6 \%$ ) $\left[m / z 528\left(\mathrm{M}^{+}, 0.9 \%\right), 462\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{6}, 0.9\right), 407\left(\mathrm{M}^{+}\right.\right.$ $\left.-\mathrm{PhCO}_{2}, 10.5\right), 105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right), 77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 14.4\right)$ and 66 $\left(\mathrm{C}_{5} \mathrm{H}_{6}{ }^{+}, 10.8\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1740 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.), 1320 s and 1280 s ( $\mathrm{C}-\mathrm{F}$ str.) and $1150 \mathrm{~s}, \mathrm{C}-\mathrm{O}$ str.)]; and (ii) a colourless solid $(1.1 \mathrm{~g})$ which was recrystallised from light petroleumdichloromethane $(4: 1 \mathrm{v} / \mathrm{v})$ to afford 8,9-dibenzoyl-4,7-bis(trifluoromethyl) tetracyclo[4.3.0.0. $\left.{ }^{3.5} 0^{4.9}\right]$ non-7-ene $13 \mathrm{c}(0.70 \mathrm{~g}$, $1.51 \mathrm{mmol}, 15 \%$ ), m.p. $153^{\circ} \mathrm{C}$ (Found: C, 64.6 ; H, 3.5; F, 24.4. $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires C, 64.9; $\mathrm{H}, 3.8 ; \mathrm{F}, 24.7 \%$ ) [m/z (CI) 480 $\left(\mathbf{M}^{+}+\mathrm{NH}_{4}, 38.0 \%\right), 463\left(\mathbf{M}^{+}+\mathrm{H}, 100\right), 462\left(\mathbf{M}^{+}, 32.7\right), 443$, $\left(\mathrm{M}^{+}-\mathrm{F}, 51.8\right), 357\left(\mathrm{M}^{+}-\mathrm{PhCO}, 11.0\right), 288\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}^{+}\right.$, 13.5), $122\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}{ }^{+}, 25.1\right), 106\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}^{+}, 42.7\right), 105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}\right.$, 98.2), $78\left(\mathrm{C}_{6} \mathrm{H}_{6}{ }^{+}, 25.7\right)$ and $77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 28.1\right) ; v_{\max } / \mathrm{cm}^{-1} 1690 \mathrm{~s}$ and 1655 s (ketonic $\mathrm{C}=\mathrm{O}$ str.) and 1310 s and 1275 s ( $\mathrm{C}-\mathrm{F}$ str.)].

Attempts to separate the $2: 1$ adduct isomers by repeated DCFC (same eluent) were only partially successful in that one isomer was obtained pure in low yield and identified as meso 7C or 7D ( $0.20 \mathrm{~g}, 0.40 \mathrm{mmol}, 4 \%$ ), m.p. $133-135^{\circ} \mathrm{C}$ (Found: C, 67.9; $\mathrm{H}, 4.1$; $\mathrm{F}, 21.4 . \mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 68.2 ; \mathrm{H}, 4.2 ; \mathrm{F}$, $21.6 \%) ; m / z 528\left(\mathrm{M}^{+}, 5.8 \%\right), 462\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{6}, 3.6\right), 407$ $\left(\mathrm{M}^{+}-\mathrm{PhCO}_{2}, 37.8\right), 406\left(\mathrm{M}^{+}-\mathrm{PhCO}_{2}-\mathrm{H}, 15.9\right), 341$ $\left(\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{6}{ }^{+}, 7.3\right), 340\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6}{ }^{+}, 6.5\right), 337\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{O}^{+}\right.$, 13.5), $105\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}, 100\right)$ and $77\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 8.7\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1740 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.), 1320 s and 1280 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1150 s ( $\mathrm{C}-\mathrm{O}$ str.).

Thermolysis of the $2: 1$ Adduct 7a.-A solution of the adduct 7a $(0.92 \mathrm{~g}, 1.70 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ when heated in vacuo in a Rotaflo tube at $50^{\circ} \mathrm{C}$ for 4 days was recovered unchanged. The material, resealed in the tube, was heated at $70^{\circ} \mathrm{C}$ for 21 days and the solvent removed to afford a residue ( 0.87 g ) which was shown by ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopy to contain unchanged adduct $7 \mathbf{a}$ ( $c a .75 \%$ recovered) and a number of minor products none of which corresponded to the $1: 1$ adduct 13c.

Reactions of the Ethanoate $\mathbf{1 b}$.-(a) With furan. A mixture of the ester $1 \mathrm{~b}(2.94 \mathrm{~g}, 10.8 \mathrm{mmol})$, furan $(1.48 \mathrm{~g}, 21.8 \mathrm{mmol})$ and dichloromethane ( $10 \mathrm{~cm}^{3}$ ), heated in vacuo in a Rotaflo tube (ca. $30 \mathrm{~cm}^{3}$ ) at $50^{\circ} \mathrm{C}$ for 6 days and the solvent then removed (rotary evaporator), gave a residue ( 3.22 g ) which was shown by TLC [eluent; light petroleum-dichloromethane ( $1: 1 \mathrm{v} / \mathrm{v}$ )] to contain three major components ( $R_{\mathrm{f}}, 0.53,0.22$ and 0.18 ) and a number of minor components. The major components were separated by DCFC (same eluent) to afford: (i) a yellow sticky oil identified as a mixture of the two isomers [ratio ca. $2: 1\left({ }^{19} \mathrm{~F}\right.$ NMR $)$ ], ( $E$ )- and ( $Z$ )-5-(1-acetoxyethylidene)-1,4-bis(trifluoro-methyl)-8-oxatricyclo[4.3.0.0 ${ }^{2,9}$ ]nona-3,6-diene 11b $(0.74 \mathrm{~g}$, $2.19 \mathrm{mmol}, 20 \%$ ) (Found: C, 49.7; H, 3.0; F, 33.6. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires $\mathrm{C}, 49.4 ; \mathrm{H}, 2.9 ; \mathrm{F}, 33.5 \%$ ) $\left[\mathrm{m} / \mathrm{z} 340\left(\mathrm{M}^{+}, 0.8 \%\right), 285\left(\mathrm{M}^{+}\right.\right.$ $\left.-\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}, 5.1\right), 281\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}, 5.5\right), 229\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CO}, 16.2\right), 69\left(\mathrm{CF}_{3}^{+}, 7.4\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right.$, 100 ); $v_{\max } / \mathrm{cm}^{-1} 1770 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.), 1675 m (C=C str.), 1320s (C-F str.) and 1180 s (C-O str.)]; (ii) a solid ( 1.25 g ), which was further purified by recrystallisation from light petroleumdichloromethane ( $4: 1 \mathrm{v} / \mathrm{v}$ ) to give 8,9-diacetyl-4,7-bis(trifluoro-methyl)-2-oxatetracyclo[4.3.0.0 ${ }^{3.5} 0^{4,9}$ ]non-7-ene 13b $(0.97 \mathrm{~g}$, $2.85 \mathrm{mmol}, 26.5 \%$ ), white crystals m.p. $106^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 49.6$; $\mathrm{H}, 2.9 ; \mathrm{F}, 33.5 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{3}$ requires $\mathrm{C}, 49.4 ; \mathrm{H}, 2.9 ; \mathrm{F}, 33.5 \%$ ) $\left[m / z 340\left(\mathbf{M}^{+}, 3.2 \%\right), 325\left(\mathbf{M}^{+}-\mathrm{Me}, 2.9\right), 271\left(\mathbf{M}^{+}-\right.\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}-\mathrm{H}, 6.1\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 34.8\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1710 \mathrm{~s}$ (ketonic $\mathrm{C}=\mathrm{O}$ str.), 1420 m and 1405 m ( $\mathrm{C}=\mathrm{C}$ str.), 1270 s and 1225 s (C-F str.) and 1140 s (C-O str.)]; and (iii) a solid ( 0.59 g ), which was further purified by preparative-scale TLC [eluent: light petroleum-dichloromethane $(3: 1 \mathrm{v} / \mathrm{v})]$ to give the

2:1 adduct 4-acetoxy-3-methyl-5,11-bis(trifluoromethyl-8,15dioxahexacyclo $\left[10.2 .1 .0 .{ }^{2.11} 0 .{ }^{4.9} 0 .{ }^{5.7} 0^{6.10}\right]$ pentadeca-2,13-diene 10 ( $0.44 \mathrm{~g}, 1.08 \mathrm{mmol}, 10 \%$ ), m.p. $154^{\circ} \mathrm{C}$ (Found: C, $53.1 ; \mathrm{H}$, 3.6; $\mathrm{F}, 27.7 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{4}$ requires $\mathrm{C}, 52.9 ; \mathrm{H}, 3.4 ; \mathrm{F}, 27.9 \%$ ) $\left[m /=(\mathrm{Cl}) 426\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 100 \%\right), 408\left(\mathrm{M}^{+}, 3.3\right), 365\right.$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}, 3.0\right), 358\left(\mathrm{M}^{+}+\mathrm{NH}_{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}, 9.3\right), 208$ $\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~F}_{3} \mathrm{O}_{3}{ }^{+}, 21.8\right), 180\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2}{ }^{+}, 20.7\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right.$, 34.8 ); $v_{\text {max }} / \mathrm{cm}^{-1} 1765 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.), 1420 m and 1375 m ( $\mathrm{C}=\mathrm{C}$ str.), 1250 s and 1220 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1160 s and 1140 s (C-O str.)]-the structure was confirmed by X-ray crystallography.
(b) With cyclopentadiene at $50^{\circ} \mathrm{C}(2: 1$ molar ratio). A mixture of the ester $1 \mathrm{~b}(5.00 \mathrm{~g}, 18.4 \mathrm{mmol})$, cyclopentadiene ( 2.35 $\mathrm{g}, 36.4 \mathrm{mmol})$ and dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$, heated in vacuo in a Rotaflo tube (ca. $30 \mathrm{~cm}^{3}$ ) at $50^{\circ} \mathrm{C}$ for 4 days and the solvent then removed (rotary evaporator), gave a semi-solid residue $(7.32 \mathrm{~g})$ which was shown by TLC [eluent: light petroleumdichloromethane $(4: 1 \mathrm{v} / \mathrm{v})$ ] to contain 4 major ( $R_{\mathrm{f}} 0.72,0.66$, 0.50 and 0.44 ) and several minor components. The major components were separated by DCFC (same eluent) to give: (i) a liquid mixture of the three isomers [two meso and a $( \pm)$ pair] of the $2: 1$ adduct 1,1-bis(3-trifluoromethylbicyclo[2.2.1]hepta-2,5-dien-2-yl)ethyl ethanoate 7b ( $4.45 \mathrm{~g}, 11.0 \mathrm{mmol}, 60 \%$ ) (Found: C, 59.1; $\mathrm{H}, 4.5 ; \mathrm{F}, 28.2 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 59.4 ; \mathrm{H}$, $4.5 ; \mathrm{F}, 28.2 \%$ ) $\left[m / z 404\left(\mathrm{M}^{+}, 26.1 \%\right), 361\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}\right.\right.$, 14.3), $345,\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}, 100\right), 344\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{H}\right.$, 14.2), $66\left(\mathrm{C}_{5} \mathrm{H}_{6}{ }^{+}, 22.1\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 61.6\right) ; v_{\max } / \mathrm{cm}^{-1}$ 1745 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1650 m ( $\mathrm{C}=\mathrm{C}$ str.), 1300 s and 1260 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1140 s (C-O str.)]; (ii) the $1: 1$ adduct 1 -acetoxy-1-[4,7bis(trifluoromethyl)tetracyclo $\left[4.3 .0 .0 .{ }^{3.5} 0^{4.9}\right]$ non-7-en-9-yl]ethene $18\left(0.75 \mathrm{~g}, 2.21 \mathrm{mmol}, 12 \%\right.$ ), m.p. $84^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 53.6$; $\mathrm{H}, 3.9 ; \mathrm{F}, 33.4 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires C, $53.3 ; \mathrm{H}, 3.6 ; \mathrm{F}, 33.7 \%$ ) $\left[m / z 338\left(\mathrm{M}^{+}, 31.6 \%\right), 278\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 19.0\right), 209\right.$ $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{3}{ }^{+}, 100\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 49.4\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1750 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$ str.), $1660 \mathrm{~m}(\mathrm{C}=\mathrm{C}$ str.), 1310 s and 1285 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1130 s and 1110 s (C-O str.)]; (iii) 1-acetoxy-1-[4,7-bis(trifluoromethyl) tetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ]non-7-en-9-yl]ethanol (diastereoisomer 1) $19(0.17 \mathrm{~g}, 0.48 \mathrm{mmol}, 2.5 \%)$, m.p. $102^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.7 ; \mathrm{H}, 4.1 ; \mathrm{F}, 31.8 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}$, $3.9 ; \mathrm{F}, 32.0 \%$ ) $\left[m / z, 356\left(\mathrm{M}^{+}, 4.1 \%\right), 297\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}\right.\right.$, 23.2), $296\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{H}, 25.7\right), 277\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{O}^{+}\right.$, 20.2), $228\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{4}{ }^{+}, 26.7\right), 163\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{4}{ }^{+}, 95.9\right)$ and 43 $\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 100\right) ; v_{\max } / \mathrm{cm}^{-1} 3420 \mathrm{br}(\mathrm{O}-\mathrm{H}$ str.), 1730 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1310s and 1280s (C-F str.) and 1140 s and 1110 s (C-O str.)]; and (iv) the second diastereoisomer of $19(0.18 \mathrm{~g} .0 .50 \mathrm{mmol}$, $3 \%$ ), m.p. $129{ }^{\circ} \mathrm{C}$ (Found: C, 50.3; H, 3.9; F, 32.1. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}, 3.9 ; \mathrm{F}, 32.0 \%)$ [ $\mathrm{m} / \mathrm{z} 356\left(\mathrm{M}^{+}, 2.8 \%\right), 297\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3} \mathrm{CO}_{2}, 25.4\right), 163\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{4}{ }^{+}, 38.0\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}\right.$, 100 ); $v_{\text {max }} / \mathrm{cm}^{-1} 3430 \mathrm{br}$ (O-H str.), 1705 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1310 s and 1290 s (C-F str.) and 1190 s and 1140 s ( $\mathrm{C}-\mathrm{O}$ str.)].

In the ${ }^{19} \mathrm{~F}$ NMR spectrum of the crude reaction mixture bands were present at $\delta_{\mathrm{F}} 20.1$ and 20.75 with the latter band of comparable intensity to that due to compound 19 (diastereoisomer 1) at $\delta_{\mathrm{F}} 20.8$. These bands are identical with those present in the spectrum of the diketone 13 d and a weak spot ( $R_{\mathrm{f}}$ 0.42 ) observed on TLC examination of the mixture supports this assignment (see later).
(c) With cyclopentadiene at $50^{\circ} \mathrm{C}(1: 1$ molar ratio $)$. The preceding experiment was repeated using the ester $1 \mathrm{lb}(2.50 \mathrm{~g}$, $9.19 \mathrm{mmol})$, cyclopentadiene $(0.61 \mathrm{~g}, 9.20 \mathrm{mmol})$ and dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ and heating at $50^{\circ} \mathrm{C}$ for 5 days. Work-up gave a high-boiling residue ( 3.02 g ) which was shown by TLC (eluent as before) to contain five major components ( $R_{\mathrm{f}} 0.80,0.72,0.66$, 0.50 and 0.44 ) and several minor components (including one with $R_{\mathrm{f}} 0.42$ ). Separation of the major components by DCFC (same eluent) gave: (i) a mixture of two diastereoisomers (ratio $52: 48 ;{ }^{1} \mathrm{H}$ NMR) of the Diels-Alder $1: 1$ adduct 1-(3-trifluoro-methylbicyclo[2.2.1]hepta-2,5-dien-2-yl)-1-(3,3,3-trifluoropro-
pynyl)ethyl ethanoate $\mathbf{6 d}(0.71 \mathrm{~g}, 2.10 \mathrm{mmol}, 23 \%)$ (Found: C, 53.6; H, 3.9; F, 33.6. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}, 3.6$; F , $33.7 \%$ ) $\left[m / z 338\left(\mathrm{M}^{+}, 13.2 \%\right), 319\left(\mathrm{M}^{+}-\mathrm{F}, 10.0\right)\right.$, $295\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3} \mathrm{CO}, 22.4\right), 279\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2}, 96.0\right), 278\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3} \mathrm{CO}_{2}-\mathrm{H}, 25.7\right), 259\left(\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{~F}_{5}{ }^{+}, 66.1\right), 66\left(\mathrm{C}_{5} \mathrm{H}_{6}{ }^{+}, 29.6\right), 51$ $\left(\mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}, 74.5\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 100\right) ; v_{\max } / \mathrm{cm}^{-1} 2280 \mathrm{~s}(\mathrm{C} \equiv \mathrm{C}$ str.), 1760 s (ester $\mathrm{C}=\mathrm{O}$ str.), 1285 s ( $\mathrm{C}-\mathrm{F}$ str.) and 1150 s ( $\mathrm{C}-\mathrm{O}$ str.)]; (ii) $2: 1$ adduct $7 \mathrm{~b}(0.51 \mathrm{~g}, 1.30 \mathrm{mmol}, 14 \%$; (iii) the $1: 1$ disubstituted ethene 18 ( $0.33 \mathrm{~g}, 1.0 \mathrm{mmol}, 11 \%$ ); (iv) alcohol 19 (diastereoisomer 1) $(0.25 \mathrm{~g}, 0.70 \mathrm{mmol}, 8 \%$; (v) a mixture of both diastereoisomers of alcohol $19(0.64 \mathrm{~g}, 1.79 \mathrm{mmol}, 19.5 \%)$; and (vi) alcohol 19 (diastereoisomer 2) ( $0.18 \mathrm{~g}, 0.51 \mathrm{mmol}, 6 \%$ ).

The diastereoisomers of $1: 1$ adduct $\mathbf{6 d}$ were not separated pure by repeated DCFC (same eluent), but sufficient enhancement of purity was achieved to allow individual NMR assignments to be made.

The formation of considerable amounts of alcohol 19 in this experiment was found to be due to water present in the reactant ester 1b. For subsequent experiements it was dried by treatment of an ethereal solution with $\mathrm{P}_{2} \mathrm{O}_{5}$.
(d) With cyclopentadiene at $20^{\circ} \mathrm{C}(1: 1$ molar ratio $)$. The reaction was repeated using a mixture of anhydrous ester $\mathbf{1 b}$ $(7.50 \mathrm{~g}, 27.6 \mathrm{mmol})$ and cyclopentadiene $(1.82 \mathrm{~g}, 27.6 \mathrm{mmol})$ in dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$ at room temperature for 12 days. Work-up gave a residue ( 8.90 g ) which was purified by DCFC [eluent, light petroleum-dichloromethane ( $4: 1 \mathrm{v} / \mathrm{v}$ )] to give a mixture (ratio $52: 48$ ) of the two diastereoisomers of $1: 1$ adduct 6d ( $8.16 \mathrm{~g}, 24.1 \mathrm{mmol}, 88 \%$ ).

Thermolysis of the $1: 1$ Adduct $\mathbf{6 d}$.-The adduct $\mathbf{6 d}(1.40 \mathrm{~g}$, 4.14 mmol ) in dichloromethane ( $8 \mathrm{~cm}^{3}$ ) was heated in vacuo in a Rotaflo tube (ca. $30 \mathrm{~cm}^{3}$ ) at $50^{\circ} \mathrm{C}$ for 7 days and the solvent removed (rotary evaporator) to give a yellow solid ( 1.38 g ) which was shown by TLC [eluent, light petroleum-dichloromethane $(4: 1 \mathrm{v} / \mathrm{v})$ ] to contain unchanged ester $\mathbf{6 d}\left(R_{\mathrm{f}} 0.80\right)$, two major components ( $R_{\mathrm{f}} 0.66$ and 0.42 ) and a number of minor components. Separation of the mixture by DCFC (same eluent) gave: (i) unchanged ester $1 \mathrm{~b}(0.43 \mathrm{~g}, 1.3 \mathrm{mmol}, 31 \%$ recovered); (ii) the $1: 1$ disubstituted ethene $18(0.43 \mathrm{~g}, 1.28$ mmol, $45 \%$; and (iii) 8,9-diacetyl-4,7-bis(trifluoromethyl)tetracyclo[4.3.0.0. ${ }^{3.5} 0^{4.9}$ ] non-7-ene $13 \mathrm{~d}(0.20 \mathrm{~g}, 0.60 \mathrm{mmol}, 21 \%)$ (Found: C, 53.0; H, 3.6; F, 33.4; $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}$, $3.6 ; \mathrm{F}, 33.7 \%)\left[\mathrm{m} / \mathrm{z} 338\left(\mathrm{M}^{+}, 4.7 \%\right), 323\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 4.5\right), 295\right.$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}, 0.7\right), 252\left(\mathrm{M}^{+}-2 \times \mathrm{CH}_{3} \mathrm{CO}, 1.3\right), 207$ $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{O}^{+}, 10.6\right)$ and $43\left(\mathrm{CH}_{3} \mathrm{CO}^{+}, 100\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1710 \mathrm{br}$ and 1680 br (ketone $\mathrm{C}=\mathrm{O}$ str.) and 1320 s and $1265 \mathrm{~s}(\mathrm{C}-\mathrm{F}$ str.)].

NMR Spectral Data.-1a. $\delta_{\mathrm{H}} 8.05\left(\mathrm{~d}, 2 \mathrm{H}, 2\right.$ o- $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}, J 8\right)$, $7.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $7.62-7.30(\mathrm{~m}, 6 \mathrm{H}, m$ - and $p$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \delta_{\mathrm{F}}+28.7\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right) ; \delta_{\mathrm{C}} 163.0$ (s, $\mathrm{O}-\mathrm{C}=\mathrm{O}), 134.9\left(\mathrm{~s}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right), 133.8\left(\mathrm{~s}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 133.2$, 129.7, 129.0, 128.3, 128.2 and $126.0\left(6 \mathrm{~s}, o-, m\right.$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 114.0\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 256\right), 81.2\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \equiv C,{ }^{3} J 6\right), 74.8$ (q, CF ${ }_{3} C \equiv \mathrm{C},{ }^{2} J 54$ ) and $67.0(\mathrm{~s},-\mathrm{C}<$ ).

1b. $\delta_{\mathrm{H}} 2.60\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $2.48\left(\mathrm{~s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}+25.1$ $\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right) ; \delta_{\mathrm{C}} 167.5(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 113.9\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 258\right), 81.8(\mathrm{q}$, $\mathrm{CF}_{3} \mathrm{C} \equiv C,{ }^{3} J 7$ ), $72.0\left(\mathrm{q}, \mathrm{CF}_{3} C \equiv \mathrm{C},{ }^{2} J 56\right), 61.0(\mathrm{~s},-\mathrm{C}<), 28.1(\mathrm{~s}$, $\mathrm{CH}_{3} \mathrm{CO}_{2}$ ) and $19.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

6d. (Major diastereoisomer). $\delta_{\mathrm{H}}$ 6.95-7.85 (m, 2 H , $\mathrm{CH}=\mathrm{CH}), 3.95$ and $3.84(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{HC} \leqslant), 2.32$ and $1.97(\mathrm{AB}$, $\left.2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, J_{\mathrm{AB}} 11\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $1.68(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}+27.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}\right)$ and 20.1 (s, $3 \mathrm{~F}_{3} \mathrm{C}=\mathrm{C}$ ); $\delta_{\mathrm{C}}$ $168.2(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 159.2\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 5\right), 142.7$ and $141.7(2 \mathrm{~s}$, $\mathrm{CH}=\mathrm{CH}), 137.0\left(\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 35\right), 123.3\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 268\right)$, $114.0\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C} \equiv \mathrm{C},{ }^{1} J 258\right), 85.3\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \equiv C,{ }^{3} J 7\right.$ ), $72.9(\mathrm{q}$, $\left.\mathrm{CF}_{3} C \equiv \mathrm{C},{ }^{2} J 53\right), 72.1\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 70.9(\mathrm{~s},-\mathrm{C}<), 55.5$ and $52.2(2 \mathrm{~s}$, $2 \mathrm{HC} \leqslant), 25.8\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $20.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

6d. (Minor diastereoisomer). $\delta_{\mathrm{H}} 6.95-6.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH})$,
3.86 and $3.73(2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{HC} \in)$, 2.13 and $1.95\left(\mathrm{AB}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$, $\left.J_{\mathrm{AB}} 11\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}+27.4$ (s, $3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{C}$ ) and $+20.0\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right.$ ); $\delta_{\mathrm{C}} 168.1$ ( s , $\mathrm{O}-\mathrm{C}=\mathrm{O}$ ), 159.2 ( $\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 5$ ), 142.1 and 141.7 ( 2 s , $\mathrm{CH}=\mathrm{CH}$ ), 136.8 (q, $\mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 35$ ), 123.3 (q, $C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 268$ ), $114.0\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C} \equiv \mathrm{C},{ }^{1}{ }^{J} 258\right), 84.8\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \equiv C,{ }^{3} J 7\right), 72.6(\mathrm{q}$, $\mathrm{CF}_{3} C \equiv \mathrm{C},{ }^{2} J 53$ ), $72.3\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 70.6(\mathrm{~s},-\mathrm{C} \leqslant)$, 54.9 and 52.2 ( 2 s , $2 \mathrm{HC}<), 26.2\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $20.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
$7 \mathrm{a}\left[(Z)\right.$-isomer]. $\delta_{\mathrm{H}} 8.22\left(\mathrm{~d}, 2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}, J 7\right), 8.10-7.25$ $\left(\mathrm{m}, 8 \mathrm{H}, m\right.$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $o-, m$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5}$ ), 6.55 ( s , $1 \mathrm{H}, \mathrm{O}-\mathrm{CH}=), 6.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{HC}=, J_{2}, 35\right.$ ), $5.02(\mathrm{~d}, 1 \mathrm{H}, \geq \mathrm{CH}-\mathrm{O}$, $\left.J_{2}, 95.5\right)$ and $1.72\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{HC}<, J_{9,2} 5.5, J_{3,2} 5.3\right)$; $\delta_{\mathrm{F}}+17.0(\mathrm{~s}$, $3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}$ ) and 10.9 (s, $3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \in$ ); $\delta_{\mathrm{C}} 164.1$ ( $\mathrm{s}, \mathrm{O}-\mathrm{C}=\mathrm{O}$ ), 156.2 (s, $=\mathrm{CH}-\mathrm{O}), 145.7(\mathrm{~s},=\mathrm{C}-\mathrm{O}), 139.3\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2} \mathrm{~J} 32\right.$ ), 135.0 ( s, ipso $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ ), 131.4 (q, $\mathrm{CF}_{3} \mathrm{C}=C \mathrm{H},{ }^{3} J$ 7), 133.7, $129.9,129.3,128.3,128.1$ and $128.0\left(6 \mathrm{~s}, o-, m\right.$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ ), $128.7\left(\mathrm{~s}\right.$, ipso- $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $123.2\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 273\right.$ ), $123.1(\mathrm{q}$, $\mathrm{CF}_{3},{ }^{1} \mathrm{~J} 272$ ), 116.2 (br, C-6), $111.0(\mathrm{~s}, \mathrm{C}-5), 75.1(\mathrm{br},>\mathrm{CH}-\mathrm{O})$, 34.6 (q, $\left.\mathrm{CF}_{3} C<,{ }^{2} J 40\right)$ and $20.1(\mathrm{br},-\mathrm{CH}<)$.

7b. (Major isomer $E$ or $Z$ ). $\delta_{\mathrm{H}} 6.36$ (s, $\left.1 \mathrm{H},=\mathrm{CH}-\mathrm{O}\right), 6.23$ (br, $1 \mathrm{H},=\mathrm{CH}), 4.95\left(\mathrm{~d}, 1 \mathrm{H},>\mathrm{CH}-\mathrm{O}, J_{2.9} 5.3\right), 2.12(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}_{2}$ ), $2.10\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right)$ and $1.65(\mathrm{t}, 1 \mathrm{H}, \mathrm{HC} \leqslant$, $\left.J_{9.2} \simeq J_{3.2} 5.3\right)$; $\delta_{\mathrm{F}}+18.1\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and $+10.2(\mathrm{~s}, 3 \mathrm{~F}$, $\mathrm{CF}_{3} \mathrm{C}-$ ); $\delta_{\mathrm{C}} 168.3$ (s, $\mathrm{O}-\mathrm{C}=\mathrm{O}$ ), $155.5(\mathrm{~s},=\mathrm{CH}-\mathrm{O}), 145.7$ ( s , $=\mathrm{C}-\mathrm{O}) 130.0\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{CH},{ }^{3} \mathrm{~J} 7\right.$ ), $128.0\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2} \mathrm{~J} 32\right)$, 123.3 and $123.2\left(2 \mathrm{q}, 2 \mathrm{CF}_{3},{ }^{1} J 272\right), 115.6$ (br, C-6), 109.2 (s, C-5, 74.8 (br, $\mathrm{CH}-\mathrm{O}$ ), $34.0\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \in,{ }^{2} J 41\right.$ ), 20.6 (s, $\mathrm{CH}_{3} \mathrm{CO}_{2}$ ), $20.0\left(\mathrm{q},-\mathrm{CH}={ }^{3} \mathrm{~J} 2\right)$ and $19.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
7b. (Minor isomer $Z$ or $E) . \delta_{\mathrm{H}} 6.50(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}-\mathrm{O}), 6.13(\mathrm{br}, 1$ $\mathrm{H},=\mathrm{CH}), 5.01\left(\mathrm{~d}, 1 \mathrm{H},>\mathrm{CH}-\mathrm{O}, J_{2.9} 5.3\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$, $2.15\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right)$ and $1.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{HC}<, J_{9.2} \simeq J_{3.2} 5.3\right) ; \delta_{\mathrm{F}}$ $+16.0\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and $+10.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \leqslant\right) ; \delta_{\mathrm{C}} 168.6(\mathrm{~s}$, $\mathrm{O}-\mathrm{C}=\mathrm{O}), 154.7(\mathrm{~s},=\mathrm{CH}-\mathrm{O}), 146.5(\mathrm{~s},=\mathrm{C}-\mathrm{O}), 137.5\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right.$, $\left.{ }^{2} J 32\right), 130.8\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{CH},{ }^{3} \mathrm{~J} 7\right), 123.4$ and $123.2\left(2 \mathrm{q}, 2 \mathrm{CF}_{3},{ }^{1} J\right.$ 272), 116.2 (br, C-6), 112.0 (s, C-5), 74.8 (br, $=\mathrm{CH}-\mathrm{O}$ ), 34.2 ( q , $\mathrm{CF}_{3} C-,{ }^{2} J 40$ ), $20.6\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 20.4\left(\mathrm{q},-\mathrm{CH}<,{ }^{3} J 2\right)$ and $19.7\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
8a. $\delta_{\mathrm{H}} 7.90\left(\mathrm{~d}, 2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, J 7.3\right), 7.78(\mathrm{~d}, 2 \mathrm{H}, 2$ o$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, J 7.3$ ), $7.70-7.28\left(\mathrm{~m}, 6 \mathrm{H}, m\right.$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$ ), 5.27 (d, $\left.1 \mathrm{H}, 3-\mathrm{H}, J_{5.3} 4.0\right), 4.95(\mathrm{br}, 1 \mathrm{H}, 1-\mathrm{H}), 3.42(\mathrm{br}, 1 \mathrm{H}, 6-\mathrm{H})$ and $2.75\left(\mathrm{~d}, 1 \mathrm{H}, 5-\mathrm{H}, J_{3.5} 4.0\right) ; \delta_{\mathrm{F}}+20.1\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and +18.1 ( $\mathrm{s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}-$ ); $\delta_{\mathrm{c}} 193.9(\mathrm{~s},=\mathrm{C}-\mathrm{C}=\mathrm{O}), 190.2(\mathrm{~s}, \geqslant \mathrm{C}-\mathrm{C}=\mathrm{C})$, 145.9 ( $\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} \mathrm{~J} 4$ ), i 36.7 and 136.4 ( $2 \mathrm{~s}, 2$ ipso $-\mathrm{C}_{6} \mathrm{H}_{5}$ ), 133.7, 132.8, 129.2, 128.4, 128.3 and 128.2 ( $6 \mathrm{~s}, o-, m$ - and $p$ $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $133.2\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2} J 36\right.$ ), $124.3\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 272\right), 121.0$ (q, $\mathrm{CF}_{3},{ }^{1} J 271$ ), 92.7 (br, C-1), 74.7 (s, C-9), 68.6 (q, C-3, ${ }^{3}{ }^{3} 2$ ), 49.1 (br, C-6), 42.4 (q, $\mathrm{CF}_{3} \mathrm{C} \leftarrow,{ }^{2} J 37$ ) and 33.4 (br, C-5).

13b. $\delta_{\mathrm{H}} 5.08\left(\mathrm{dd}, 1 \mathrm{H}, 1-\mathrm{H}, J_{6.1} 4, J_{3.1} 1\right), 4.46(\mathrm{br}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.18(\mathrm{br}, 1 \mathrm{H}, 6-\mathrm{H}), 2.65\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}, J_{3.5} 4, J_{6.5} 1\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.=\mathrm{CCOCH}_{3}\right)$ and $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \geqslant \mathrm{COCH}_{3}\right) ; \delta_{\mathrm{F}}+19.0(\mathrm{~s}, 3 \mathrm{~F}$, $\mathrm{CF}_{3} \mathrm{C}=\mathrm{C}$ ) and $+17.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \leqslant\right.$ ); $\delta_{\mathrm{C}} 201.7(\mathrm{~s},=\mathrm{C}-\mathrm{C}=\mathrm{O})$, 198.0 (s, $-\mathrm{C}-\mathrm{C}=\mathrm{O}$ ), $148.4\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 4\right.$ ), 131.4 ( $\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C}$, $\left.{ }^{2} J 36\right), 125.1\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 271\right), 121.8\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}<{ }^{1} J 270\right)$, 93.7 (s, C-1), 74.1 (s, C-9), 68.1 (q, C-3, ${ }^{3} J 2$ ), 49.1 (q, C-6, ${ }^{3} J 2$ ), $42.5\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}-{ }^{2} J 38\right), 33.6$ and $31.0\left(2 \mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{CO}\right)$ and 27.6 (q, C-5, ${ }^{3} J 2$ ).

13c. $\delta_{\mathrm{H}} 7.75\left(\mathrm{~m}, 4 \mathrm{H}, 4 \rho-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right), 7.57-7.15(\mathrm{~m}, 6 \mathrm{H}, 6 \mathrm{~m}$ - and $\left.p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right), 3.45(\mathrm{br}, 1 \mathrm{H}, 1-\mathrm{H}), 3.16\left(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}, J_{5,3} 1\right), 2.68$ (dd, $\left.1 \mathrm{H}, 6-\mathrm{H}, J_{5.6} 3.5, J_{1.6} 1\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}, J_{6.5} 3.5, J_{3.5} 1\right.$ ) and 1.97 and $1.82\left(\mathrm{AB}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, J_{\mathrm{A} . \mathrm{B}} 12\right) ; \delta_{\mathrm{F}}+19.4$ and + $19.2\left(2 \mathrm{~s}, 2 \mathrm{CF}_{3}\right) ; \delta_{\mathrm{C}} 194.2(\mathrm{~s},=\mathrm{C}-C=\mathrm{O}), 190.0(\mathrm{~s}, \geq \mathrm{C}-C=\mathrm{O})$, $147.9\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 4\right)$, $138.6\left(\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 35\right.$ ), 136.9 and 136.5 ( $2 \mathrm{~s} .2 \mathrm{ipso}-\mathrm{C}_{6} \mathrm{H}_{5}$ ), 133.4, 132.5, 129.9, 128.9, 128.3 and $128.1\left(6 \mathrm{~s},\left(-, m-\right.\right.$ and $\left.p-\mathrm{C}_{6} \mathrm{H}_{5}\right), 125.7\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 272\right), 121.4$ (q, CF ${ }_{3} \mathrm{C}-.{ }^{\prime} J 271$ ), $74.5(\mathrm{~s}, \mathrm{C}-9), 62.6(\mathrm{~s}, \mathrm{C}-1), 51.0(\mathrm{br}, \mathrm{C}-6)$, $41.0\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}-,{ }^{2} J 36\right), 33.0\left(\mathrm{q}, \mathrm{C}-5,{ }^{3} J 2\right.$ ), 31.4 (br, C-3) and 30.4 ( $\mathrm{s}, \mathrm{CH}_{2}$ ).

13d. $\delta_{\mathrm{H}} 3.22(\mathrm{br}, 1 \mathrm{H}, 1 \cdot \mathrm{H}), 2.62\left(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}, J_{5.3} 1.5\right), 261(\mathrm{br}$,
$6-\mathrm{H}), 2.44\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCOCH}_{3}\right), 2.28\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}, J_{6.5} 5, J_{3.5}\right.$ $1.5), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \geqslant \mathrm{CCOCH}_{3}\right)$ and 1.89 and $1.80(\mathrm{AB}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, \mathrm{J}_{\mathrm{A} . \mathrm{B}} 12\right) ; \delta_{\mathrm{F}}+20.75$ and $+20.1\left(2 \mathrm{~s}, 2 \mathrm{CF}_{3}\right) ; \delta_{\mathrm{C}} 201.8$ ( s , $=\mathrm{C}-C=0$ ), $195.9(\mathrm{~s}, \geqslant \mathrm{C}-C=0), 150.3\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 4\right), 135.3(\mathrm{q}$, $\mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 35$ ), 125.7 (q, $C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 271$ ), $121.3\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\right.$, ${ }^{1} J$ 271), 75.7 (s, C-9), 62.5 (s, C-1), 50.3 (br, C-6), 38.9 (q, $\mathrm{CF}_{3} \mathrm{C} \leqslant,{ }^{2} J 37$ ), $31.8(\mathrm{br}, \mathrm{C}-3), 32.7$ and $28.2\left(2 \mathrm{~s}, 2 \mathrm{CH}_{3} \mathrm{CO}\right)$ and 29.8 (q, C-5 ${ }^{3} J$ 3).
15. $\delta_{\mathrm{H}} 8.10\left(\mathrm{~m}, 2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right), 7.88-7.20(\mathrm{~m}, 7 \mathrm{H}, m$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{4}$ ), $7.14(\mathrm{~s}, 1 \mathrm{H},>\mathrm{CH}-\mathrm{O}), 5.15(\mathrm{dd}, 1 \mathrm{H}$, $J_{1 \mathrm{a} .1} 4, J_{9.1} 2$ ), $4.38(\mathrm{br}, 1 \mathrm{H}, 9-\mathrm{H}), 3.23(\mathrm{br}, 1 \mathrm{H}, 2-\mathrm{H})$ and 2.67 (dd, $1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}, J_{1.1 \mathrm{a}} 4, J_{2.1 \mathrm{a}} 2$ ); $\delta_{\mathrm{F}}+18.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and $+15.7\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\right) ; \delta_{\mathrm{C}} 166.0(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 151.9\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C\right.$, ${ }^{3} J$ 5), 143.6 (s, ipso- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ ), 136.1 and $129.5(2 \mathrm{~s}, 2$ ipso$\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 133.2,130.4,129.8,129.6,128.4,127.6$ and $125.0(7 \mathrm{~s}, 7$ aromatic $=\mathrm{CH}), 128.4\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2} J 37\right), 124.9\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J\right.$ 271), 121.6 (q, $C \mathrm{~F}_{3} \mathrm{C} \in,{ }^{1} J 269$ ), 96.0 (s, C-4), 68.8 ( $\mathrm{s}, \mathrm{C}-9$ ), 68.1 (s, C-8b), 65.9 (br, C-1), 51.0 (br, C-2), 41.1 (q, $\mathrm{CF}_{3} C \in,{ }^{2} J 35$ ) and 31.3 (br, C-1a).
16. $\delta_{\mathrm{H}} 8.08\left(\mathrm{~m}, 2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right.$ ), $7.85-7.13(\mathrm{~m}, 7 \mathrm{H}, m$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 4.82\left(\mathrm{dd}, 1 \mathrm{H}, 1-\mathrm{H}, J_{1 \mathrm{a.} .1} 4, J_{9.1} 2\right), 4.14$ (br, $1 \mathrm{H}, 9-\mathrm{H}$ ), $3.77\left(\mathrm{qd}, 1 \mathrm{H}, \mathrm{CF}_{3} \mathrm{CH}<, J_{\mathrm{F} .3} 5, J_{2.3} 4\right.$ ), $2.79(\mathrm{br}, 1$ $\mathrm{H}, 2-\mathrm{H})$ and $2.30\left(\mathrm{dd}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}, J_{1.1 \mathrm{a}} 4, J_{2.1 \mathrm{a}} 2\right) ; \delta_{\mathrm{F}}+17.0(\mathrm{~s}, 3 \mathrm{~F}$, $\left.\mathrm{CF}_{3} \mathrm{C} \leqslant\right)$ and $+13.5\left(\mathrm{~d}, \mathrm{CF}_{3} \mathrm{CH}=, J_{\text {H.F }} 5\right) ; \delta_{\mathrm{C}} 163.5(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O})$, 146.8 (s, ipso- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ ), $146.2\left(\mathrm{q}, \mathrm{C}-3 \mathrm{a},{ }^{3} \mathrm{~J} 5\right.$ ), $145.2(\mathrm{~s},=\mathrm{C}-\mathrm{O}$, C-4), 137.1 and 129.1 ( $2 \mathrm{~s}, 2$ ipso $-\mathrm{C}_{6} \mathrm{H}_{4}$ ), 129.9, 129.3, 129.2, 128.7, 128.6, 128.5 and 128.2 ( $7 \mathrm{~s}, 7$ aromatic $=\mathrm{CH}$ ), 124.8 ( q , $\mathrm{CF}_{3},{ }^{1} J 271$ ), 121.6 (q, $\mathrm{CF}_{3},{ }^{1} J 270$ ), 82.6 (s, C-9), 64.7 ( $\mathrm{s}, \mathrm{C}-8 \mathrm{~b}$ ), 60.3 (br, C-1), 48.7 (br, C-2), 42.4 (q, $\mathrm{CF}_{3} \mathrm{CH}<,{ }^{2} J 36$ ), 40.5 (q), $\mathrm{CF}_{3} C \in,{ }^{2} J 37$ ) and 20.2 (br, C-1a).
18. $\delta_{\mathrm{H}} 6.65(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}) 5.35$ and $5.24\left(2 \mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 3.03$ (br, $1 \mathrm{H}, 6-\mathrm{H}), 2.58(\mathrm{br}, 1 \mathrm{H}, 1-\mathrm{H}), 2.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $2.20-1.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, 3-\mathrm{H}, 5-\mathrm{H}\right) ; \delta_{\mathrm{F}}+17.5\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and +10.1 ( $\mathrm{s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}<$ ); $\delta_{\mathrm{C}} 168.6$ ( $\mathrm{s}, \mathrm{O}-\mathrm{C}=\mathrm{O}$ ), 138.5 ( s , $\mathrm{O}-\mathrm{C}=), 130.4\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \equiv C,{ }^{3} J 6\right.$ ), $129.8\left(\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 38\right), 125.6$ (q, $\left.C F_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 264\right), 123.5\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C} \leqslant,{ }^{1} J 264\right), 117.3\left(\mathrm{~s},=\mathrm{CH}_{2}\right)$, 88.5 (s, C-9), 42.7 (br, C-6), 40.8 (br, C-1), 33.4 (q, $\mathrm{CF}_{3} C \longleftarrow,^{2} J$ 38), 31.1 ( $\mathrm{s}, \mathrm{CH}_{2}$ ), 28.0 ( $\mathrm{s}, \mathrm{C}-5$ ) and 22.4 ( $\mathrm{q}, \mathrm{C}-3,{ }^{3} \mathrm{~J} 2$ ).

7a. (Separated meso-isomer). $\delta_{\mathrm{H}} 80.4$ (d, $2 \mathrm{H}, 2 o-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$, $J 7$ ), $7.63-7.10\left(\mathrm{~m}, 8 . \mathrm{H}, m\right.$ - and $p-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ and $o-, m$ - and $p$ $\mathrm{C}_{6} \mathrm{H}_{5}$ ), $6.75(\mathrm{~d}, 2 \mathrm{H}, 2=\mathrm{CH}, J 6.5), 6.32(\mathrm{~d}, 2 \mathrm{H}, 2=\mathrm{CH}, J 6.5), 3.78$ (br, $2 \mathrm{H}, 2 \mathrm{HC} \leqslant$ ), 3.74 (br, $2 \mathrm{H}, 2 \mathrm{HC} \leqslant$ ) and 2.46 and 1.95 ( 2 $\mathrm{AB}, 4 \mathrm{H}, 2 \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, J_{\mathrm{A} . \mathrm{B}} 10$ ); $\delta_{\mathrm{F}}+19.2\left(\mathrm{~s}, 2 \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right.$ ); $\delta_{\mathrm{C}} 165.6$ ( s , $\mathrm{O}-\mathrm{C}=\mathrm{O}$ ), $160.2\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{3} \mathrm{~J} 5\right.$ ), 141.7 and 141.5 ( 2 s , $\mathrm{CH}=\mathrm{CH}$ ), 137.3 (s, ipso- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}$ ), 135.9 ( $\mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2}{ }^{2} \mathrm{~J} 35$ ), 132.9, 129.6, 128.3, 128.0, 127.8 and 127.1 ( $6 \mathrm{~s}, 6$ aromatic $=\mathrm{CH}$ ), 130.7 (s, ipso- $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 123.3 (q, $C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 269$ ), $84.4(\mathrm{~s},-\mathrm{C} \longleftarrow)$, $69.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 56.8(\mathrm{~s}, \mathrm{HC} \leftarrow)$ and $52.3\left(\mathrm{q}, \mathrm{HC} \leq,{ }^{3} J 2\right)$.
7a. [ $( \pm)$ - and second meso-isomers]. $\delta_{\mathrm{H}} 8.08-8.00(2 \mathrm{H}, o-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right), 7.57-7.23(8 \mathrm{H}$, aromatic $=\mathrm{CH}), 7.17-6.30(4 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}), 3.85-3.50(4 \mathrm{H}, \mathrm{HC} \leqslant)$, and 2.43-2.18 and 1.95-1.83 $\left(4 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{F}}+19.5$ and $+19.3\left(\mathrm{CF}_{3}\right) ; \delta_{\mathrm{C}} 165.0$ and $164.6(2$ $\mathrm{s}, \mathrm{O}-\mathrm{C}=\mathrm{O}$ ), 158.9, 158.0 and 156.9 ( $3 \mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} \mathrm{~J} 5$ ), 142.2, 142.1, 141.0 and 140.2 ( $4 \mathrm{~s}, \mathrm{CH}=\mathrm{CH}$ ), 138.5, 136.6 and 135.0 ( 3 q , $\mathrm{CF}_{3} \mathrm{C}=\mathrm{C},{ }^{2} \mathrm{~J} 35$ ), 137.7 and $137.3\left(2 \mathrm{~s}\right.$, ipso $\left.-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right), 130.4$ and $130.2\left(2 \mathrm{~s}, i p s o-\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.7-127.2($ aromatic $=\mathrm{CH}), 123.7$, 123.6 and $123.5\left(3 \mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 268-269\right), 85.4$ and $85.2(2 \mathrm{~s}$, $-\mathrm{C}<), 71.2,71.1$ and $69.5\left(3 \mathrm{~s}, \mathrm{CH}_{2}\right), 56.6$ and $55.9(2 \mathrm{~s}, \mathrm{HC}<)$ and 52.7 and $52.5\left(2 \mathrm{q}, \mathrm{HC}<,^{3} J 2\right)$.

7b. $\left[( \pm) 1-\right.$ and two meso-isomers]. $\delta_{\mathrm{H}} 6.90(\mathrm{dd},=\mathrm{CH}, J 5,3)$, $6.85(\mathrm{~m},=\mathrm{CH}), 6.79(\mathrm{~m},=\mathrm{CH}), 6.74(\mathrm{dd},=\mathrm{CH}, J 5,3), 6.65(\mathrm{dd}$, $=\mathrm{CH}, J 5,3$ ), 4.15-3.71 (m, HC $<$ ), 3.51 (br, $\mathrm{HC}<$ ), 3.32 (br, $\mathrm{HC} \Leftarrow$ ) and 2.25-1.60 (complex, $\mathrm{CH}_{2}$ ); $\delta_{\mathrm{F}}+21.8,+21.0$ and $+20.1\left(3 \mathrm{~s}, \mathrm{CF}_{3}\right) ; \delta_{\mathrm{C}} 169.0,168.9$ and $168.8(3 \mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 160.9$, $160.2,159.9$ and $159.3\left(4 \mathrm{q}, \mathrm{CF}_{3} \mathrm{C}=C,{ }^{3} J 5\right.$ ), 142.3, 142.1, 141.9, $141.8,141.7,141.4,141.3$ and $141.2(8 \mathrm{~s},=\mathrm{CH}), 137.2,137.1,136.7$ and $136.1\left(4 \mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 35\right), 123.7,123.6,123.5$ and 123.4 (4 q, $\left.\mathrm{CF}_{3},{ }^{1} J 269-270\right), 79.9,79.0$ and $78.8(3 \mathrm{~s},-\mathrm{C}-), 72.9,71.9$,
70.5 and $70.3\left(4 \mathrm{~s}, \mathrm{CH}_{2}\right), 54.4,54.1,53.9$ and $53.8(4 \mathrm{~s}, \mathrm{HC}), 52.4$, 52.1, 52.0 and 51.9 ( $4 \mathrm{q}, \mathrm{HC}<,^{3} J 2-3$ ), and 26.0, 24.2, 22.2, 21.0, 20.9, 20.8, 20.6 and $20.5\left(8 \mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$.
10. $\delta_{\mathrm{H}} 6.60\left(\mathrm{dd}, 1 \mathrm{H}, 14-\mathrm{H}, J_{13.14} 5.5, J_{1.14} 1.2\right), 6.23$ (dd, 1 H , $13-\mathrm{H}, J_{14.13} 5.5, J_{12.13} 1.2$ ), $5.38(\mathrm{br}, 1 \mathrm{H}, 1-\mathrm{H}), 5.30(\mathrm{br}, 1 \mathrm{H}$, $12-\mathrm{H}), 5.13(\mathrm{br}, 1 \mathrm{H}, 9-\mathrm{H}), 4.30\left(\mathrm{~d}, 1 \mathrm{H}, 7-\mathrm{H}, J_{6.7} 4.5\right), 2.62(\mathrm{br}, 1$ $\mathrm{H}, 10-\mathrm{H}), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\right)$ and 1.49 $\left(\mathrm{dt}, 1 \mathrm{H}, 6-\mathrm{H}, J_{7.6} 4.5, J_{10.6} \simeq J_{9.6} 1.2\right) ; \delta_{\mathrm{F}}+18.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right)$ and $+14.6\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3}\right) ; \delta_{\mathrm{C}} 169.5(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 140.7$ and 131.1 $(2 \mathrm{~s}, \mathrm{CH}=\mathrm{CH}), 131.8(\mathrm{~s},=\mathrm{C}), 129.1(\mathrm{~s},=\mathrm{C}), 126.5\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 278\right)$, $124.7\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J 271\right), 87.2(\mathrm{~s}, \mathrm{O}-\mathrm{C} \longleftarrow), 83.1\left(\mathrm{q}, \mathrm{C}-12,{ }^{3} J 2\right), 78.6$ (s, C-9), 78.2 ( $\mathrm{s}, \mathrm{C}-1$ ), 75.2 (q, C-7, ${ }^{3} J 6$ ), 55.0 (q, C-11, ${ }^{2} J 24$ ), 42.8 (q, C-10, $\left.{ }^{3} J 2\right), 35.7\left(\mathrm{q}, \mathrm{C}-5,{ }^{2} J 37\right), 20.8$ and $19.8\left(2 \mathrm{~s}, \mathrm{CH}_{3}\right)$ and 14.7 (q, C-6, ${ }^{3} J 2$ ).
19. (Diastereoisomer 1). $\delta_{\mathrm{H}} 6.95(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 2.65(\mathrm{br}, 1 \mathrm{H}$, $\mathrm{OH}), 2.52(\mathrm{br}, 1 \mathrm{H}, \mathrm{C}-1), 2.39\left(\mathrm{ABd}, 1 \mathrm{H}, \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, J_{\mathrm{B} . \mathrm{A}} 11.0, J_{3 . \mathrm{A}}\right.$ $1.5)$ and $1.55\left(\mathrm{AB}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}, J_{\mathrm{A} . \mathrm{B}} 11.0\right), 2.28(\mathrm{br}, 1 \mathrm{H}, 3-\mathrm{H})$, $2.22(\mathrm{br}, 2 \mathrm{H}, \mathrm{C}-5, \mathrm{C}-6), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $1.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}+20.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and $+9.8\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C} \Leftarrow\right)$; $\delta_{\mathrm{C}} 168.7(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 132.8\left(\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} J 31\right), 130.6(\mathrm{q}$, $\left.\mathrm{CF}_{3} \mathrm{C}=\mathrm{CH},{ }^{3} J 6\right), 126.0\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 272\right), 123.0\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \leqslant\right.$, ${ }^{1} J 271$ ), 85.9 (s, O-C-O), $82.0(\mathrm{~s}, \mathrm{C}-9), 43.8\left(\mathrm{q}, \mathrm{C}-5,{ }^{3} J 1\right), 40.2(\mathrm{~s}$, $\mathrm{C}-6), 30.4(\mathrm{~s}, \mathrm{C}-1), 29.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 29.65\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{C} \leqslant{ }^{2} J 35\right), 25.8(\mathrm{q}$, $\left.\mathrm{C}-3,{ }^{3} \mathrm{~J} 2\right), 22.0\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $17.9\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
19. (Diastereoisomer 2). $\delta_{\mathrm{H}} 6.55(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.32(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 2.48$ and $1.55\left(\mathrm{ABt}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, J_{\mathrm{A} . \mathrm{B}} 11, J_{1 . \mathrm{A}} \simeq J_{1 . \mathrm{B}} \simeq\right.$ $\left.J_{3, \mathrm{~A}} \simeq J_{3, \mathrm{~B}} 1.5\right), 2.42(\mathrm{br}, 1 \mathrm{H}, 6-\mathrm{H}), 2.22(\mathrm{br}, 1 \mathrm{H}, 5-\mathrm{H}), 2.10(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 2.08\left(\mathrm{q}, 1 \mathrm{H}, 3-\mathrm{H}, J_{5.3} \simeq J_{\mathrm{A} .3} \simeq J_{\mathrm{B} .3} 1.5\right)$ and $1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{F}}+19.0\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{C}\right)$ and $+9.6(\mathrm{~s}, 3 \mathrm{~F}$, $\left.\mathrm{CF}_{3} \mathrm{C} \leqslant\right) ; \delta_{\mathrm{C}} 172.1(\mathrm{~s}, \mathrm{O}-\mathrm{C}=\mathrm{O}), 131.1\left(\mathrm{q}, \mathrm{CF}_{3} C=\mathrm{C},{ }^{2} \mathrm{~J} 31\right), 130.8$ (q, $\mathrm{CF}_{3} \mathrm{C}=C \mathrm{H},{ }^{3} J 6$ ), $126.5\left(\mathrm{q}, C \mathrm{~F}_{3} \mathrm{C}=\mathrm{C},{ }^{1} J 270\right), 123.0$ (q, $C \mathrm{~F}_{3} \mathrm{C} \leqslant,{ }^{1} J 272$ ), 86.7 (s, O-C-O), 85.6 (s, C-9), 45.6 (s, C-5), 39.7 (s, C-6), $31.6\left(\mathrm{q}, \mathrm{CF}_{3} C \leqslant,^{2} J 35\right), 30.7\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 30.7(\mathrm{~s}, \mathrm{C}-1)$, 23.9 (q, C-3. ${ }^{3} \mathrm{~J} 2$ ), $22.7\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right)$ and $21.8\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.

## Acknowledgements

We are indebted to the Committee of Vice Chancellors and Principals for an O.R.S. Award (to S. T.) and we thank Dr. R. G. Pritchard (UMIST) for carrying out the X-ray structural determinations.

2 Reported in part in a preliminary communication; M. G. Barlow, S. Tajammal and A. E. Tipping, J. Chem. Soc., Chem. Commun., 1989, 1637.
3 For example, see W. Carruthers, Some Modern Methods of Organic Synthesis, 3rd edn., Cambridge University Press, 1986; I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Interscience, Chichester, 1989.
4 For example, see R. E. Putman, R. J. Harder and J. E. Castle, J. Am. Chem. Soc., 1961, 83, 391; R. S. H. Lin and C. G. Krespan, J. Org. Chem., 1969, 34, 1271; R. J. DePasquale, C. D. Padgett and P. W. Rosser, J. Org. Chem., 1975, 40, 810; A. Chauvine, J. Greinner, R. Postor and A. Cambon, Tetrahedron, 1986, 42, 663.
5 L. Sibous and A. E. Tipping, J. Fluorine Chem., 1992, in the press.
6 W. J. Gensler and A. P. Mahadevan, J. Am. Chem. Soc., 1955, 77, 3076; W. J. Gensler, A. P. Mahadevan and J. Cassella, J. Am. Chem. Soc., 1956, 78, 163; S. N. Edge, R. Wolovsky and W. J. Gensler, J. Am. Chem. Soc., 1961, 83, 3080.
7 H. Taniguchi, I. M. Mathai and S. I. Miller, Tetrahedron, 1966, 22, 867.

8 L. T. Scott, G. J. DeCicco, J. L. Hyun and G. Reinhardt, J. Am. Chem. Soc., 1985, 107, 6546.
9 H. D. Verkruijsse and H. Hasselaar, Synthesis, 1979, 292.
10 A. Sevin, W. Chodkiewicz and P. Cadiot, Bull. Soc. Chim. Fr., 1974, 913.

11 F. G. Drakesmith, O. J. Steward and P. Tarrant, J. Org. Chem., 1968, 33, 280.
12 G. Sugarman and A. E. Tipping, unpublished results.
13 A. W. McCulloch, D. G. Smith and A. G. McInnes, Can. J. Chem., 1974, 52, 1013.
14 H. K. Hall, J. Org. Chem., 1960, 25, 42.
15 C. G. Krespan, B. C. Mekusick and T. L. Cairns, J. Am. Chem. Soc., 1961, 83, 3428.
16 M. G. Barlow, R. G. Pritchard, S. Tajammal and A. E. Tipping, Acta Crystallogr., in the press.
17 M. R. Willcott and V. H. Cargle, J. Am. Chem. Soc., 1967, 89, 723.

18 W. E. Doering and E. K. Schmidt, Tetrahedron, 1971, 27, 2005; W. E. Doering and K. Sachdev, J. Am. Chem. Soc., 1975, 97, 5512.

19 J. A. Berson and P. B. Dervan, J. Am. Chem. Soc., 1973, 95, 267 and 269.

20 J. A. Berson and G. L. Nelson, J. Am. Chem. Soc., 1967, 89, 5303.
21 C. J. Collins, Chem. Rev., 1969, 69, 543.
22 C. C. Lee, A. J. Cessna and S. Vassie, J. Am. Chem. Soc., 1973, 95, 5688.

23 W. G. Finnegan and W. P. Norris, J. Org. Chem., 1963, 28, 1139.

## References

1 Part 9, M. G. Barlow, S. Tajammal and A. E. Tipping, J. Fluorine Chem., 1992, in the press.

